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Abstract

Numerical rootfinding problems are quite common in stochastic modeling.
However, many solutions stop at the presentation of a probability generat-
ing function for the state probabilities. But with increasing easy access to
computing power, many problems whose answers were typically left in in-
complete form or for which there has been a search for alternative solution
methods are currently being reexamined. The class of Markov chains whose
transition matrices have quasi-triangular layouts (i.e., those having sub- or
super-triangular sets of zeros) is a good case in point. They have an espe-
cially nice structure which leads to a rather concise representation fer the
generating functions. But the complete solution then requires the finding of
roots. Fortunately, these problems can be shown to have special properties
that make accurate rootfinding quite feasible, and we thus supply an efficient
numerical procedure for solution.' - | .- e
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1 INTRODUCTION

As numerous authors have noted (for example, Abolnikov and Dukhovny,
1987, Bailey, 1954, and Powell, 1985), many denumerable discrete-time Markov
chains (with particular applications in inventory, dam and queueing model-
ing) have one of two special transition-matrix structures. These forms have
been typically called quasi-triangular because of the presence of sub- or super-

triangular sets of zeros:
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Z,=1- Y b,
The structure of these matrices leads to some particularly concise vep-

resentations for the probability generating functions (PGFs) of the Markov
chair equilibrium state process. When the stationary equation for such a




wiarkov chain is cxcrcised, the PGF of the steady-state probabilities has an
algebraic function in its denominator whose roots are critical in the final so-
lution. {We henceforth refer to this denominator function equated to zero as
the system’s characteristic equation).

For the transition matrix A, the characteristic equation (CE) turns out
to be (at least for complex z with absolute value < 1)

o
K = Za,:’ = af

1=0

[$]

), (1)

where K is as defined in the matrix representation A (corresponding, for ex-
ample, to a constant batch-input mocule in bulk qucucs). Under the assunig
tion that a{z) possesses all its derivatives at z = 1 (i.e., that the distribution
{a,} has all moments), a(z) may be set equal to the Laplace-Stieltjes trans-
frrm of a distribution function [call that A(t), and set its mean to [/ul of a
nonnegative random variable evaluated at A(l — 2), where X is an arbitrary
positive constai:t for the time being. Thus we may also write that

= A0 - 2) (2)

The CE associated with the matrix B may be written as

K= Zb,z’ = B(z), (3)
1=0
or
2 = B'{u(l - 2)]. (4)

In these representations, the constant K is as given in B (correspending,
for example, to a constant batch-service module in bulk queues), 8(z) is
defined as the PGF of the probabilities {h,}. and B* ic the Lanlace-Stieltjes
transform of a distribution function [call that B(t), and set its mean to 1 Al of
a nonnegative random variable evaluated at pf1 - z), where jis an arbitrary
positive constant.




Recognize that Equations (1) and {3) are generalizations of the well-
known fundamental equation of branching processes, typically written as
z = f(2), where f would be the PGF for the number of offspring emanating
from one parent. Gross and Harris (1985). for example, provide the details
of the root problem for this model. In actuality, it is the B problem which
1s 1n fact the more direct relative ~f the branching process, co it is this one
on which we comment in detail first.

The CE of the matrix B may be rewritten in the standard way by using
z = rexrp(1f), and we find that

rKexp(i0K) = B*[u(1 - r cap(i8))]eap(2nni) X (5)
forn = 1,2...., K. This equation clearly has a root at unity, and by Rouché’s
theorem, we can show that there are K others inside the unit circle | z [= |

when the chain is ergodic. The condition for ergodiaity 1s that

o0

B(1) =3 nb, » K

n-0

or

dB™ (1 — z1}]
(—————Mm( & ) > K.
dz ot

These can be shown to be equivalent to the requirement that K A/u < 1.
For the A-matrix problem, recall that the characteristic equation is

K= AT - 2)), (6)
where A% is a Laplace-Stieltjes transform. Ergodocity obtains here when
g
a'(l) = Z na, < K
n="n

or

dA* (A1 H» .
ga A N
< dl I \

This 1s equivalent to requiring that A Iy - ).




It is easily shown by Rouché’s theorem that (6) has K roots inside and
on the unit circle, including the root z=1. Abolnikov and Dukhovny (1987)
have noted that all the roots on the unit circle are, in fact, simple.

In the prior work of Chaudhrv, Harris and Marchal (1989), we have seen
under an assumption of infinite divisibility that Equation (1) from matrix A
may be rewritten as

2K a2k,

It then follows that

o~
-1
—-

z=a1(2)e, x (n=12,.,K),

where €, x is an ain (out of K) complex root of unity.

When the original a(z) is infinitelv divisible, the function a,(z) is itself
a legitimate PGI" with a;(1) = A/Ap < 1. The equation z = a,(z) has only
the root z = 1; the remaining K — 1 roots inside and on the unit circle follow
distinctly from the other A — 1 equations using Rouché’s theorem.

The analyticity of the Kth root of a(z) and subsequent use of Rouché’s
theorem for distinctness also follows when a(z) is nonzero though not neces-
sarily infinitely divisible. (See Chaudhry, Harris and Marchal, 1989.)

Unfortunately, it is not true that all a(z) associated with such models
have no zeros inside the unit circle. However, we can feel comfortable know-
ing that a good number of the problems encountered in practice will have
infinitely divisible distributions since many such probability functions are
built up by mixtures and convolutions from the infinitely divisible exponen-
tial and Erlang. For all other distributions, one should always first try to
determine whether a(z) is ever zero, for, if not, the Kth-root approach of the
infinitely divisible case will work.

The vanishing of a(z) is equivalent to requiring that

A1 = 2)] = /nm =g 404y = 0,

By changing to the poiar form z = r(cosf + 7 sin 8) and then separating 1ol
and imaginary parts, this is identical t asking that, simultancousiy,

/ e M=ot t el A sin ) dA(1) — O
0




and

‘/\ e‘A“"CO’G)'sin[(Ar sin 9)t]a(i)dt = 0.
0

Chaudhry, Harris and Marchal (1989) have established firm sufficient con-
ditions for distinctness of the roots for (1) and (2). But neither of their con-
ditions is necessary. Examples are presented in their paper for which a(z)
has zeros, but where the characteristic equations still have distinct roots. In
fact, they never found an example without distinct roots. But a proof that
this is indeed always true is elusive, and the search for a necessary condition
will be the subject of future research.

All of these arguments hold in a parallel way for the B-matrix problen,
as well, as long as B'(1) > K, with its [{ roots strictly inside the unit circle.
The B-matrix version of the problem would then have §,(z) in place of a;(z)
in Equation (7).

2 ALGORITHM

The Chaudhry, Harris and Marchal (1989) experiences for both the A- and
B-matrix problems yielded ¢ nearlyv circular pattern of roots on the inside
of the unit circle. This is, indeed, perfectly predictable given the above
results. This comes directly from writing the right-hand side of the Kth
root of the characteristic equation as the product of a root of unity and the
Kth root of the probability generating function. The support of the random
voristlo carresnopding to the nof o, is increasingly focused toward 0, so that
the net effect of the multiplication is to move the root slightly away from
the unit circle’s boundary toward the center, largely preserving a circle-like
appearance. In examples offered in the following, we display a number of
diagrams of such patterns. Some possible guidance for the speeding up of
the algorithm comes to mind from this formulation. It is to use the nth root
(out of K, n = 1,2,... K) of unity as the starting point for each attempied
solution of (7). Thus we would set the initial value of the radius at | and #
at 2n K /n. We can even do a bit better since we know that the modulus of
each root must be less than the positive real root: therefore we nse an initial
modulus for any particular problem eqnal to the smallest one obtained <o far

as n moves to K.
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Compare this to the approach used by Chaudhry and colleagnes tiin
example. see Briere and (Chaudhry (1957 te find the roots for the ¢ Fy 1
problem, asin Equations (31 and (1. Their algorithm works on the loganthm
of Equation (1), using the real and imaginary parts separately First. the
real equation is solved for r, holding # hxed. Then the imaginarv equation
15 suived for i, given the derived r and hxed A 1f the result is integral. we
are finished. otherwise. the fractiona! part of n s used and compared to 1t
counterpart related to a larger 8. If the formeris smaller. then 615 increased

further. Such comparisons are repeated until there 1s a decrease between the
fractional parts of the last two derived n values. This indicales that a root
1s located at an angle between the last two 8 values. Details of the algorithm
are given it Briere and Chaudhry (1927

We have built up our algorithm. then. from the intuitively anpealing
near-circular pattern found for the ronts The roots are ordered according to
increasing angle 6. with a starting value for the search for the (ne1)st roat
using the modulus of the nth root and the angle of the (n+1)st root of unity,
€n:1 i We chose to explore the use of a fixed-point algorithm. knowing
that a sufficiently well-chosen starting point would lead to convergence of
successive substitutions of z into Equation (7). This is particularly easv to
formulate in hght of the lineanty ~f the left-hand side of (7).

Experimentation with this fixed-point technique has led to success. and
detailed examples are presented in the following sections. To start the overall
algerithm, it 1s necessary to provide one of the roots of the problem and the
obvious initial choice is to find the real root on (0, 1), since we know the exact
angle of this particular root. Any method could be used to solve for this real
ront, actually, but we chose to use the same fixed-point appreach. simply for
uniformity in the algorithn,. The derivation of a safe starting point for the
Incation of the real root proved to be an interesting problem in its own right.
Due to the knowledge that the support for a; is toward 0, a5 initial guess
greater than the value of the root would be natural.

At first ananitial valve equal to o'( 1)/ for the A-matrix problem (or
equivalently, K/3'(1) for the B-matriz model) secined logical, zin-~ this is
the (single) real ront (= p) for the basic A /Al/1 queueing problem  While
this starting value did work in ail cazes the accuracy of the real root fonnd
was not 1deal because small but bathercome complex compoments crept st
the solution.  Nevertheless, all successive roots were found correctlv and
their values matched those obtained via other raotfinding packages (e.g.. the




«<PACK implementation of the Chandhry approach

The progress of convergence of the iteration from starting values outside
of the near-circular pattern of roots could suffer from discontinuities in the
derivatives of the function a;(z) bronght about by the zerns (1f any) of the
function a. But it has been observed that the roots of a(2) lie alwavs autside
of the locus of the roots of the characteristic equation (71 It has also been
observed that the root locus was skewrd asvmmetrically toward the positive
axis in the complex plane, thus making the roots with angles closest to 7
those of shortest modulus. Thus, if one wished to provide starting values
within the basin of attraction of the desired roots, but avoid possible dis-
continuities in the derivative, one ronld seek starting values at the angle of
By -2 = 2K 7| K /2| radians. finding the roots in the top half of the complex
plane by seeking the roots in the order 2o\ 'n withn = K 20K 2 1. .0
thus ending with the real root mn (011,

This variation on the technique proved particularly successful. and a start-
ing value of (r.8) = (0, -0 :,) for the first root was used. The effect of this
variation was to present a value of slightlv less modulus than the desired
root, and at an angle of the corresponding root of unity, as the starting value
for the fixed point iteration on each root. In general. the numerical impact of
the variation was to improve the efficiency of convergence for the fixed point
by one to two iterations for each complex root. The real root on (0,11 was
found much more quickly by “coming from the inside” of the root locus, and

the complex component of the root was exactly zero.

3 Proof of Convergence

For purposes of this proof. we assume that a(z) is infinitely divisible and
thus that anv one of its roots is a proper PGF.

Theorem 1 Define the nth characteristic equation for the G/Ey .1 and
Ex /G /1 problems as

K

ol s, 0

)

or

1R
- (Y‘Zn) } f’:n‘ 0](:71"’n[\'-

&




where €, i 15 the nth of K roots of unity, and the roots zp, 2k, ... .27, 2.
K, = | K /2], are ordered starting unth the root of greatest angle in the upper
complez half plane, progressing toward the positive real aris. From an 1mitial
pont 2\ = (74, 8y) with modulus ro = ‘z,.0 1 < m+ 1 < Ky the method

of successive substitutions,

+1
TS ol

applied to the nth characteristic equatron for the G/ Ey 'l and Eye G 1 proh
lems wall converge to a unique roof.

Proof. Realize first that the characteristic equation i1s separable into the
factors €, 5 and a;(z,) — 3 a;,2) (say). Note that a;(z,) s a function of
z{Y) at the ith iteration of successive substitution, but that ¢, x is unchanged
by the iteration. We are assured thai all the z,, n = 1, ... K are distinct
simple roots in or on the unit circle, as previously proven in Chaudhry. Harris
and Marchal’s Theorems 1 and 4. ' It thus suffices to show then that the
fixed-point approach is guaranteed to converge to a root in {z; - | since the
distinctness of the roots will assure us that there cannot be convergence to
the same answer for more than one ¢, ;. Also note that it has been shown
empirically that [z,,1] < [z] for 0 < n < K.

To complete the proof, then, the critical need is to show that the proba-
bility generating function a;(z) is less than 1 — & (8 an infinitesimal positive
constant) for anv z chosen within or an the closed and bounded contour

iz = 1 — &. This 1s indeed true because

21 3 a1 - 8y

o<

s | o

. | - ]
§ a].lz I i § )01,1'
=0 |

1 1=

[}
-
"
c

<(1=8)> oy, =1-6

=N

since the {a),} define a legitimate probability distribution under infinite
divisibility whenever the traffic intensitv < 1. 00

'For certain ofz). this mav be due to the fact that the function o(z) is nonrero over thy
cornplex unit disk (at least), and for manv problems because o(z) is infinvtels diciaible
In anv other case, i.e., if a(z) itself has roats in the camplex plane. then the derivatives of
f(z) are not continuous evervwhere. This alone does not preclude convergener toa fixed

point. but may result in erratic performance of the iteration,




- U = =R - =

4 RESULTS

For the exercise of our algorithm (called RVIX), we chose to apply the tech-
nique to a variety of the systems anzlyzed in Chaudhry, Harris and Marchal
(198y) - CHM in the following. The problems covered here ure listed by
the corresponding table in that rifere.~e” paper: Table 1 (A{f)/A1/1), Ta-
ble 2 (PH/EK /1), Table 3 \GH/E; /1), Table 5 (PH/Eg/1), ana Table 7
(R./Ex /1), all solved as G/Ek/1 or B-matrix formulations; and Table &
(Ex/GE/1) solved as an Ex /G 'l or A-matnix model. We show our results
in tables numbered identically. To the problems of CHM, severai %, Ey 1
and H,/Ek /] problems unique to this paper were added to illustrate the
exercise of our algorithm further. These additional problems appear in this
paper as Tables 4 and 6, respectively For a basis of comparison, the algo-
rithm of Chaudhry and colleagues was exercised on the same systems as our
fixed-point algorithm.

‘The stopping rule for the iteratior on each root was that successive root
values be less thar, 107! in the squarc of Euclidean distance between them
in the complex plane. This resulted in approximately a [0~7 error in the real
and complex components of the resulis.

In addition, an 1mplementaticn of a bivariate Newton’s method due to
Kahaner, Moler and Nash (1959) was run over all cases. The times shown
are those for computing and displaying the roots in the upper half-plane.

To provide a clearer picture of the environments under which our results
were obtained, we indicate in Table () the nature of the hardware used for
each algorithm. The conten’s of Table () apply to all problem types, except
for Tabies IV and VI, where the Chaudhry algorithm was run on a 16 mHz
386 without a coprocessor. Thus the rootfinding times in Tables IV and VI
are without any bias from differing computational platforms.




Table 0:
Computational Platforms

RFIX CHAUD KM&N
machine 16 mHz 12 mHz 16 mHz
on which 386 286 386
algorithm no with no

was run COPTroCessor COprocessnr  Coprocessor

Table I:

Selected Scenarios from Table 1, CHN, Af/Ey /1

(A= 1)

g K intensity RFIX CHAUD KM&N
KX/p (i sec) (wn sec) (in sec)

20.0000 10 .05 i 39
50.0000 25 2 43
200.0000 100 7 51
1000.0000 500 30 953
1.0526 10 .95 2 4
2.6316 25 3 4
10.5263 100 7 10
52.6316 500 30 281

* Found wrong positive, real ront less than 1. This happened despite an

initial guess = mod(z,) <7 2;.

|

S

12

51

251

15°

54*

257




Table 11:
Selected Scenarios from Table 2, CHM, PH/Ex /1
(A 4.21)

g K intensity RFIX CHAUD KM&N
KM/p  (in sec) (in sec) (wn sec)

460 10 91522 3 21 6!
4.210 10 .10000 3 21 5
311 15 90214 4 30 9!
2.806 15  .10000 2 28 7
155 30 .90214 5 49 16!
1.403 30 .10000 3 49 14

1 Found real root = 1.0 instead of z; < 2o = 1.




Table 111:
Selected Scenarios from Table 3, CHM, GH/Ek /1
(A = .85714)

g K wntensity RFIX CHAUD KM&N
KX/p  {(wmsec) (i sec) (1n sec)

9.00 10 95238 5 21 5%
85.00 10  .10084 1 21 4
14.01 15 91771 4 52° 6#

128.00 15  .10045 2 29 6
29.00 30  .88670 4 90" 12
257.00 30  .10006 3 48 14

* Algorithm missed some complex roots, which were captured in a second

pass.

# Positive, real root not found (error message = ITERATION NOT
MAKING GOOD PROGRESS).




Table 1V
Selected Scenarios for Nndel F'y5/Fy /1
(A= 1)

p K intensity  RFIX CHAUD* KM&N
KA/p  (in sec) (1n sec) (in sec)

2.8571 20 T 3 5 20°
6.4286 45 5 8 51°
14.2857 100 10 13 117°
20.0000 20 A 2 25 23°
45.0000 45 1 28 62°
100.0000 100 9 33 90*
22222 20 9 3 5 22°
5.0000 45 6 7 48°
11.1111 100 10 12 123°

* KM&N became totally lost, finding several roots two or three times,
despite initial guesses at unique values. The KM&N subroutires found the
negative, real root (a second time) when given a positive, real initial value, for
example. Generally, KM&N did all right in the third quarter-plane (negative-
negative), becoming confused at or before § = 90° for K=20 or 6 = 45° for
K=100. Then previously found roots would be duplicated, with the negative
real root (if any) recurring most often.

# The Chaudhry software was run «n a 16 mHz 386 without a coproces:
SOT.




Table V':
Selected Scenarios from Table 5, CHM, PH/Eg/1
(A =02)

p K ntensity  RFIX CHAUD*®* KM&N#
KX/ p  (in sec) (in sec) (i sec)

20,0 10 100 2 25
22 10 .909 5 26
300 15  .100 2 35
33 15 909 5 38
60.0 30  .100 3 63
6.6 30 900 6 66

* QPACK solution was for slightly different parameter values using the
same model. The resultant root values were not identical to those obtained
using RFIX and KM&N, but we feel that the above QPACK run times are
representative.

# KM&N could not perform the rontfinding operation for this problem
type. Incorrect values were found for all points.




Table VI:
Selected Scenarios for Model H,/Ek /1
(Al = Ag = l)

p K intensity RFIX CHAUD! KM&N
KM/ p  (in sec) (in sec) (i sec)

1.0 15 100 3 27 10
1.0 30 100 5 29 19
1.0 95 .100 14 37 60
1.0 500 .100 57 660

0.2 15 500 4 7 10
0.2 30 500 6 8 21
0.2 95 500 14 17 63
0.2 500 500 57 333

1115 .909 5 5 11°
1130 .909 7 7 21*
A1 95 909 15 74# 64*
11 500 909 58 365%

* For the real root on the uppersheet at 360°, there was agreement be-
tween KM&N and RFIX only to four or so digits.

# Missed real roots, so routine was rerun with smaller step size.

1 The Chaudhry software was run on a 16 mHz 386 without a coprocessor.




20.90
2.20
20.00
2.13
20.00
2.6

2.20

K

10

15

15

30

30

100

intensity

KA/p
10000
.90909
110000
193750
.10000
96774

.90909

Table VII:
Selected Scenarios tor Model R,/ £k /1

(
RFIX

(in sec)

1

2)

CHAUD

(1 seey
19
20
26
27
46
45

131

KM&N

(1 sec)

5

14
15

46




A

18

27

36

K

30

30

intensity

A/Kp

1

Table VIIT:
Selected Scenarios from Table 8, CHM, Ex /G E;/]

RFIX

(in sec)

2

(1 =

~
<

‘)

CHAUD KM&N
(in sec)

23

22

31

31

51

50

in sec)

8

7
{

20

21




5 OBSERVATIONS

The performance of the fixed-point algorithm can be seen to be quite effec-
tive and stable accross a wide range of intensities and root quantities. A
unique feature of the fixed-point algorithm is that the number of successive
substitution iterations required per root actually goes down as the number
of roots grows (i.e., as K grows). This is understandable since the differences
between the moduli decrease as K grows, and the starting point for each root
is closer to the final point.

The performance in this problem of the other algorithms, namely, CHAUD/
QPACK and KM&N, is indicative of a fundamental difference between equa-
tions typically requiring rootfinding in applied probability. In the QPACK
and KM&N implementations, the equation zX = a(z) is analyzed for zeros
by tislig wuether 0 = a(z) — z%. This equation represents the usual ge-
ometric conceptualization in the complex plane with K zeros inside and on
the unit disk. Contrast this with the equation used by RFIX,

Zn = al(zn)en,K
— %61(H+2wn),fK

= Kfpeiintrm/K
forn = 0,1,..., K — 1. Recall, as stated in Sec'ion 3, that once the root
of unity €, i 1s specified, z, = o(2,)¢€, x 1s one of the K branches of the
multiple-valued function a(z,)'/¥. (For example, see Churchill, Brown and
Verhey, 1974, p. 88.) Each of the K branches yields an equation of ti.e form
zp = a;(zn) €q k, each of which is a mapping of the domain

{r > 0,~7 < 6 < n} onto the domain

{Yr=p>0,2n-1)n/K <¢- (2nt 1)n/K}, n=0,...K -1

Since each of these latter domains can be transformed by an angular ro-
tation to {p > 0,-n/K < ¢ < +x NI'}. the RFIX algorithm amounts to
solving K completely separate problems with a single root. This is a geo-
metric interpretation of the proof in Section 3 that the algorithm will alwavs




ronverge to the intended root, whereas the other algorithms are, in fact, solv-
ing for the K roots of a single problem. thus allowing for the possibility of
“skipped roots” and convergence to undesired roots.

To close out our computational work. we offer pictures of the precise
locations of the roots for three of the problems included in Table VIII, namely,
Figure 1 for K = 10,p = .1; Figure 2 for K = 15,p = .9; and Figure 3 for
K =30,p=.0
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Plot of Roots Inside and On the Unit disk

Figure 2:

For F1v/GEx/1 Model.
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Figure 3:

Plot of Roots Inside and On the Unit disk
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6 CONCLUDING REMARKS

The efficacy of root finding for this problem should help remove the impres-
sion that rootfinding in stochastic anaiyvsis was frought with hidden obstacles.
Results have indeed been uniformly favorable.

In the process of this work, it was observed over many problems that all
three algorithms spent significant time searching for the real root{s) of the
problem. In fact, as noted in Table 8, RFIX exhibited convergence prob-
lems for queueing systems of the Ex /G /1 type. In gencral, the order of
convergence of fixed-point iterations is know to be linear (for example, see
Nonweiler and Horwood, 1984), while it is known quadratic for Newton's
method and 1.84 (nearly quadratic) for Muller’s method.

However, our computational timings suggest a much better generalk record
of performance for our fixed-point approach. As pointed out in Nonweiler
and Horwood (1984), the order of convergence only relates to errors and
values. But each method (namely, fixed point, Newton’s and Muller’s) has
an associated computational burden per iteration, and the simplicity of the
fixed-point iteration of RFIX is shown in the illustrative code in Appendix 1.
By contrast, the number of operations in the high-level language implemen-
tations of ..M&N’s software (Newton's method) and of Chaudhry's QPACK
(Muller’s method) likely far exceed those of RFIX per iteration; indeed, the
sheer size of the KM&N source code (comments excluded) can give some clue
as to the fact that execution-time instruction count is several times greater.

What our results show empirically is:

(a) the number of execution-time instructions per iteration is far more
dominant than the number of iterations, producing the computational com-
plexity relationship Fized Point < Newton's Method < Muller's Method;
and

(b) the ratio of improvement in speed of convergence (that is, time) be-
tween methods is not a constant from problem to problem, particularly with
changes in . That is, if, for a fixed \' of any problem type, we look at a
row of the appropriate table (namelv, I - VIII) and calculate ¢; and ¢; such
that trrix = ¢ * tnewton's @and Lrpyy = € * Eaguiters, then we will find that
over all /{' in a given problem (that is. table) that ¢; and ¢; would not be
constant.

Thus, over all K, we might say that {0y — (N )*tNayionts and Lrpgy
col ) * taruiterry, Where ¢y(K) and co( V') are nonlinear {unctions. Thus the

R




computational stability (that is, consistency of speed of convergence) of our
fixed-point method is substantially “more than linear” relative to the other
methods in this context.

The fact that this feature was observed over a wide variety of character-
istic equations implies that the fixed-point methdod may be more favorable
than other approaches for larger classes of rootfinding pro_lems in probability
and statistics.
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Appendix 1
Hustrative FORTRAN Code for Successive Substitution Algorithm

program algor
complex z,ezl
real el,e2
r0=.99
p1i=3.1415923
do 2 n=0,10
t0=n*pi1/10.0
a=r0*cos(t0)
b=r0*sin(t0)
z=cmplx(a,b)
el=cos(t0)
e2=sin(t0)
e=cmplx(el,e2)
do 1i=1,100
z1=e*(14(20.0/7.0)*(1-2))**(-.5)
write(1,%),z1
al=real(zl)
a=real(z)
bl=aimag(z!)
b=aimag(z)
if(z.eq.z1)then
goto 3
else
z=zl
endif

1 continue

3 rO=sqrt(al**2+bl1**2)
write(1,*),”’

2  continue
stop
end
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